skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Jui‐Chun_Freya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We construct a linear model of microseism power as a function of sea‐ice concentration and ocean‐wave activity with a seismic station located on northern Ellesmere Island. The influence of wind‐ice‐ocean interactions on microseism has been taken into account. We find the increase in microseism power over the last 32 years reflects the long‐term loss of sea ice and increasing ocean‐wave activity in the Arctic Ocean likely associated with climate change. We further assess model performance to determine a representative region over which sea‐ice concentration and ocean‐wave activity most directly influence the microseism power. The seismological methods developed here suggest that there is the potential to augment or refine observations of sea‐ice conditions obtained from satellites and fromin‐situobservations. Seismological methods may thus help determine properties such as sea‐ice thickness, which are less amenable to conventional observations, under a changing climate, particularly in remote areas like the High Arctic. 
    more » « less